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Abstract 

The hybrid ensemble transform Kalman filter (ETKF)-three dimensional 

variational (3DVAR) data assimilation system developed for the Weather Research and 

Forecasting (WRF) model was further tested with real observations, as a follow-up for 

the observation-system simulation experiment (OSSE) conducted in Part I.   

 A domain encompassing North America was considered.  Because of limited 

computational resources and a large number of experiments conducted, the forecasts and 

analyses employed relatively coarse grid spacing to emphasize synoptic scales.  As a first 

effort to explore the new system with real observations, relatively sparse observation 

dataset consisting of radiosonde wind and temperature during 4 weeks of January 2003 

were assimilated.  The 12-hour forecasts produced by the hybrid analysis produced less 

root-mean-square error than the 3DVAR.  The hybrid improved the forecast more in the 

western part of the domain than the eastern part.  It also produced larger improvements in 

the upper troposphere.  The overall magnitude of the ETKF ensemble spread agreed with 

the overall magnitude of the background forecast error.  For individual variables and 

layers, the consistency between the spread and the error was less than the OSSE in Part I.   

A case study was also performed to further understand a large forecast 

improvement of the hybrid during the 4-week period.  The flow-dependent adjustments 

produced by the hybrid extended a large distance into the eastern Pacific data-void 

region. The much improved analysis and forecast by the hybrid in the data void 

subsequently improved forecasts downstream in the region of verification. Although no 

moisture observations were assimilated, the hybrid updated the moisture fields flow-



 3 

dependently through cross-variable covariance defined by the ensemble covariance, 

which improved forecasts of cyclone development. 
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1. Introduction 

 A hybrid ensemble transform Kalman filter (ETKF)-three dimensional variational 

(3DVAR) data assimilation system has been recently developed for the Weather 

Research and Forecasting (WRF) model (Wang et al. 2007a, hereafter “Part I”).  It is 

based on the existing WRF 3DVAR (Skamarock et al. 2005, Ch. 9; Barker et al. 2003, 

2004). Unlike 3DVAR, which uses a static covariance model to estimate the background 

forecast errors, the hybrid system combines ensemble covariances with the 3DVAR static 

covariances to provide a flow-dependent estimate of the background error statistics. The 

ensemble-based estimates of covariances are incorporated into WRF 3DVAR using the 

extended control variable method (Lorenc 2003; Buehner 2005; Wang et al. 2007b).  The 

ensemble perturbations are updated by the computationally efficient ETKF (Wang and 

Bishop 2003; Wang et al. 2004; Wang et al. 2007c).   

As discussed in Part I, besides the benefit of including the flow-dependent 

ensemble covariance in the assimilation, our interest in hybrid schemes also stems from 

several other factors: (i) the hybrid scheme is simple to implement in the framework of 

existing operational variational schemes; (ii) it is potentially less expensive than the 

ensemble Kalman filter (EnKF, e.g., Hamill 2006), as the perturbations are updated by 

the less expensive ETKF and variational update of the ensemble mean may not scale 

linearly with the number of observations; and (iii) it may be more robust than the EnKF if 

one can only afford to run a small ensemble or if the model error is large (Wang et al. 

2007c), although in that case the benefit relative to standard 3DVAR can be expected to 

be small.   
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As an initial test of the newly developed system, an observation system 

simulation experiment (OSSE) was conducted in Part I. It was found that the analysis of 

the hybrid was more accurate than that of the 3DVAR. The OSSE assumed that the WRF 

model was perfect, the observation-error covariance was perfectly known, and the lateral 

boundary condition (LBC) ensemble perfectly represented the LBC uncertainty.  When 

assimilating real observations, however, none of these assumptions will be valid.  In this 

study (Part II), we will test the hybrid system with the assimilation of real observations 

and again compare its short-range forecast performance to that of the 3DVAR.  

 Studies exploring the use of hybrid ensemble-variational schemes for assimilating 

real observations are rather limited.  Barker (1999) reported initial test results of 

combining only a single breeding ensemble member (Toth and Kalnay 1997) with the 

UK Meteorological Office’s global 3DVAR system and suggested substantial forecast 

improvement would be possible if more ensemble members were used.  Buehner (2005) 

constructed a hybrid system based upon the Canadian global 3DVAR system and tested it 

with real observations.  Both ensembles from their global ensemble Kalman filter (EnKF; 

Houtekamer et al. 2005) and from “perturbed 3DVAR” were used.  Their results showed 

small forecast improvements and suggested revisiting the problem with increasing 

ensemble size.  On the other hand, numerous studies have tested the EnKF with real 

observations.  Encouraging results have been obtained for both global (e.g, Whitaker et 

al. 2004; Whitaker et al. 2007; Szunyogh et al. 2007; Houtekamer et al. 2005) and 

limited-area numerical weather prediction (NWP) applications (e.g, Meng and Zhang 

2007; Torn and Hakim 2007; Fujita et al. 2007; Dowell et al. 2004).  These studies 
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suggest benefits of flow-dependent ensemble covariance even in the real-observation 

scenario.   

Given the encouraging results of previous work, we further test the newly 

developed WRF hybrid ETKF-3DVAR data assimilation system with real observations in 

this study.  It represents the first investigation of the hybrid ETKF-3DVAR method for a 

limited-area NWP model with real observations.  As a first effort to understand the new 

system and given limited computational resources, the experiments were conducted with 

reduced resolution and a subset of observations. 

 In section 2, we describe how the real-data experiments are designed. Section 3 

will first present results comparing WRF 3DVAR with WRF hybrid using general 

diagnostic tools, and then present a case study to further understand the differences 

between the two approaches. Section 4 concludes and provides further discussion. 

 

2. Experiment Design 

a. Model, observations, ensemble configurations, and verification techniques 

 In this study, we ran WRF with the same model configuration as the OSSE in Part 

I. The chosen domain covers North America and the surrounding oceans (see Fig. 1 in 

Part I).  As in the OSSE, in order to conduct a large number of experiments to find 

optimal tunable parameters (section 3c in Part I; section 2c in Part II) using the limited 

computational resources available, we ran WRF with a 200-km grid spacing on a 45x45 

horizontal grid with 27 vertical levels.  The model top was at 50 hPa. 

The experiments began at 0000 UTC 1 January 2003 and lasted for four weeks. 

Observations were assimilated every 12 hours beginning at 1200 UTC 1 January.  The 
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observations consisted of real radiosonde winds and temperatures, taken from the 

operational observation dataset from the National Center for Environmental Prediction 

(NCEP)1.  Figure 1 of Part I shows a snapshot of the horizontal observation distribution.  

Observation errors were assumed to be uncorrelated and the observation error statistics 

were obtained from the NCEP operational observation dataset. No additional quality 

control was applied.  Note that for the purpose of facilitating comparison, the only 

difference between Part I and Part II in terms of the observations was that Part II adopted 

real observation values and Part I adopted simulated values.  

For the hybrid experiment, we ran a 50-member ensemble, with perturbations 

updated using the ETKF (Wang et al. 2007a).  The initial ensemble at the very beginning 

of the data assimilation cycles (0000 UTC 1 January 2003) and the LBC ensembles 

during the cycles were generated by adding random 50 perturbations to the NCEP “Final” 

analyses (FNL; https://dss.ucar.edu/datazone/dsszone/ds083.2). These perturbations were 

drawn from a normal distribution having the same covariance as the WRF 3DVAR 

NCEP background-error covariance. This method of generating the LBC ensembles was 

proposed and tested by Torn et al. (2006) for their WRF EnKF system.  

For the 3DVAR experiment, the initial background forecast at 1200 UTC 1 

January 2003 was taken from the 12-hour ensemble-mean forecast at that time so that 

both the hybrid and the 3DVAR experiments started with the same background forecast. 

The LBCs during the cycles for the 3DVAR were from the NCEP FNL analyses. 

To evaluate the forecast errors of the hybrid and 3DVAR, we interpolated the 12-

hour forecasts from either the 3DVAR or the hybrid analysis to the radiosonde 

                                                
1 See http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc for a detailed 
description of the observations. 
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observation locations, and compared them to the observations.  As in the OSSE, the 

verification domain was within the inner quarter of the total domain (see Fig. 1 of Part I). 

The verification statistics were collected after first 5 days’ data assimilation cycles. 

 

b. Tuning the 3DVAR static background-error covariance 

Since the default WRF 3DVAR NCEP covariance may not be the optimal model 

of static background-error covariances for the current data assimilation experiment, we 

re-calculated the static error covariances.  We used the WRF ETKF background-forecast 

(12-hour) ensembles that were generated corresponding to the current real-observation 

experiment settings mentioned in the previous subsection.  

Specifically, we ran the ETKF ensemble forecasts every 12 hours. The ensemble-

mean background forecast was updated by the WRF 3DVAR, using the radiosonde 

observations and the default static error covariance.  The ensemble perturbations were 

updated by the ETKF.  We then added the updated perturbations to the updated ensemble 

mean to generate an ensemble of analyses and started 12-hour ensemble forecasts.  The 

procedures were repeated for 4 weeks.  We removed the first 5 days, collected the rest of 

the 12-hour ensemble forecasts and re-calculated the static background-error covariance 

B . For details on calculating the static covariance for WRF 3DVAR, please refer to 

Skamarock et al. (2005, Chapter 9).  Finally, we re-ran the 3DVAR experiment using the 

newly generated B . As shown in Table 1, the 12-hour forecasts initialized by the 

3DVAR analysis using this tuned static covariance were slightly more accurate than 

using the default background-error covariance.  As in the OSSE, the results were also not 

sensitive to whether we used a 4-week period or a 2-week period of ETKF forecasts to 
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calculate B .  In the following 3DVAR and hybrid data assimilation experiments, we will 

use this newly generated static background-error covariance. 

 

c. Hybrid data assimilation experiments  

 The hybrid ETKF-3DVAR scheme for WRF was described in Part I. For details 

on the ETKF ensemble generation scheme and on how the ensemble was incorporated 

during the variational update through extending the control variables, please refer to 

section 2 of Part I and references therein.  Here we only briefly describe the range of 

hybrid experiments associated with different parameters. 

 Like the OSSE in Part I, the hybrid experiments in this study were conducted with 

various combinations of two tunable parameters. One was the weighting factor 1 / !
1
, 

which defined the weight placed on the static background-error covariances.  To conserve 

the total background-error variance, the weight placed on the ensemble covariance was 

given by 1!1 / "
1( )  (Hamill and Snyder 2000; Etherton and Bishop 2004; Wang et al. 

2007c).  We used 5 different values for the weighting factor, 1 / !
1

=1.0, 0.8, 0.5, 0.2, and 

0.0 . 

The other tunable parameter was the horizontal scale of the covariance 

localization applied on the ensemble covariance that was used to ameliorate the effect of 

sampling error on the analysis, i.e., the “covariance localization” (Hamill et al. 2001).  As 

discussed in section 2a of Part I, to save computational costs, we only included the 

horizontal covariance localization in the current hybrid system.  The detrimental effect of 

the sampling error in the vertical covariances estimated by the ensemble was ameliorated 

by the use of the static covariance in addition to the ensemble covariance in the cost 
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function.   In the current system, the horizontal covariance localization was modeled 

applying the recursive filter (Hayden and Purser 2005) on the extended control variables 

during the variational minimization. The correlation length scales of the recursive filter 

determine the degree to which the ensemble covariance is localized.  For each of the four 

weighting factors 1 / !
1

= 0.8, 0.5, 0.2, and 0.0 , we used five ensemble covariance 

localization scales S
e

= 707, 1414, 2828, and 4242 km , where S
e
 is the e-folding scale of 

the asymptotic Gaussian response function of the filter.  For further details on the 

meaning of 1 / !
1
 and S

e
, please refer to sections 2a and 3c of Part I. 

 As in the OSSE (section 2b of Part I), an inflation factor !  was applied to the 

ETKF ensemble perturbations to ensure that on average the background-error variance 

estimated from the spread of ensembles about the ensemble mean was consistent with the 

background-error variance estimated from the differences between the ensemble mean 

and the observations (eq. (6) of Part I).  In the current real-observation experiment, the 

inflation factor accounts not only for the ETKF’s systematic underestimation of the error 

variance owing to the limited ensemble size, but also for other mis-represented error 

sources. These include the errors from the model and the deficiencies in the LBC 

ensembles. One goal of this paper is to see if the hybrid scheme can improve upon the 

3DVAR scheme with such a simple method to account for these error sources in the 

ensembles.  Another factor in the ETKF, denoted as ! , estimated the fraction of the 

forecast-error variance projected onto the ensemble subspace. Both factors were 

estimated adaptively as discussed in Part I. 

 

3. Results 
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 In this section, we first evaluate the performance of the hybrid analysis and the 

ETKF ensemble spread using data collected over the verification period.  Then we 

present a case study to understand further the differences between the hybrid and the 

3DVAR. 

 

a. Verification of the 12-hour forecasts 

 To evaluate the performance of the 3DVAR and hybrid analyses, we examined 

characteristics of the 12-hour forecasts from the analyses generated by both schemes. The 

forecasts were evaluated against all the radiosonde wind and temperature observations in 

the verification domain.   

 

1) THE 12-HOUR FORECAST ERROR OF THE HYBRID 

Table 2 shows the root-mean-square (rms) difference between the 12-hour 

forecasts from the hybrid and the observations (called 12-hour forecast fit to 

observations, or simply 12-hour forecast error).  The rms differences of the wind2 and 

temperature forecasts to observations are shown as a function of the weighting coefficient 

1 !
1

 and the localization scale S
e
.  For most of the combinations of 1 !

1
 and S

e
, except 

when 1 !
1
= 0  for temperature, and 1 !

1
= 0 , S

e
= 4242 km for wind, the hybrid forecasts 

were more accurate than the 3DVAR.  The optimal parameters were 1 !
1
= 0.5 , 

S
e

= 2828 km  for the wind, and 1 !
1
= 0.8 , S

e
=1414 km, 2828 km for the temperature.   

As discussed in Part I’s OSSE, the slight improvement of the 1 / !
1
=1.0  

experiment (full 3DVAR covariance updating the mean of the ETKF ensemble forecasts) 
                                                
2 Wind errors are defined as the square root of the mean squared zonal plus meridional 
wind errors. 
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over the 3DVAR experiment (a single-member forecast-assimilation cycle) was 

presumably because the background forecast from the ensemble mean was more accurate 

than the single control forecast.  Further examining columns of Table 2, when 1 / !
1
 was 

decreased from 1.0 to intermediate values, the forecast error also decreased.  This 

indicated further improvement of the analysis when the ensemble covariance was 

incorporated.  The improvement of the best-performing hybrid over the 1 / !
1
=1.0  

experiment was larger than the improvement of the 1 / !
1
=1.0  experiment over the 

3DVAR experiment, suggesting the improvement of the best-performing hybrid over 

3DVAR was mainly due to incorporating the flow-dependent ETKF ensemble 

covariances during the data assimilation.  When 1 !
1

 was reduced to 0, the analyses 

became worse than when 1 !
1
=1 , especially when the localization scales were large.   

This suggested when the background-error covariance was fully estimated by the 

ensemble, appropriate covariance localization needed to be applied.  Otherwise, the 

detrimental effect of the sampling error will overwhelm the advantage of flow-dependent 

estimate of the error covariance by the ensemble.  

Further examination of Table 2 indicates that, the forecast error was less sensitive 

to the ensemble covariance localization scales when the static covariance was included in 

addition to the ensemble covariance, as in Part I’s OSSE.  For example, the range of the 

temperature forecast error as the localization scale varied was 0.15 K when 1 !
1
= 0  but 

only about 0.01~0.02 K when 1 !
1

= 0.2, 0.5, 0.8 . 

 

2) FURTHER COMPARISON OF 12-HOUR FORECAST ERRORS BETWEEN 

HYBRID AND 3DVAR 
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 Next we further compare 12-hour forecast errors between the hybrid and 3DVAR. 

We chose the hybrid with 1 / !
1
= 0.5  and S

e
= 2828 km  and compared it with the 

3DVAR. Hereafter we will term forecasts from hybrid analyses as “hybrid forecasts” and 

correspondingly “3DVAR forecasts” for forecasts from 3DVAR analyses.  Figure 1 

shows the time series of the rms 12-hour forecast fit to observations in the verification 

domain.  Most of the time, the hybrid forecasts were more accurate than the 3DVAR 

forecasts.  At day 9, the hybrid was dramatically better, which will be explored in section 

3c below.  

 Figure 2 shows the vertical profile of the 12-hour forecast bias and the rms 12-

hour forecast fit to the observations. The bias for wind was calculated as the square root 

of sum of the squared zonal wind bias and the squared meridional wind bias.  The value 

for each pressure level was calculated by averaging errors collected within a layer 50 hPa 

above and below that pressure level.  For wind, the hybrid 12-hour forecast fit the 

observations better than 3DVAR for all levels. The largest improvement of the hybrid 

over 3DVAR was located ~ 200 hPa-300 hPa.  For temperature, the hybrid 12-hour 

forecast fit the observations better than 3DVAR above 900 hPa.  Below 900 hPa, the 

hybrid showed no improvement relative to the 3DVAR.  Figure 2 also shows there was 

significant bias in the 12-hour temperature forecast at the lower troposphere below 900 

hPa for both the hybrid and 3DVAR.  This bias accounted for a significant fraction of the 

rms forecast fit to the observations (similar results were documented in Whitaker et al. 

2007 comparing the NCEP 3DVAR with an ensemble filter using the Global Forecast 

System model).  We speculate that this is because of the systematic errors in the 

boundary-layer, surface-layer, and land-surface parameterizations in WRF. 
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   The OSSE results in Part I demonstrated that the improvement of the hybrid over 

3DVAR was more pronounced in the western part than the eastern part of the continent. 

Table 3 summarizes the rms 12-hour forecast fit to the observations for the western and 

the eastern of the verification region for this real-observation experiment. The western 

and eastern regions were divided by the central longitude of the WRF domain.  

Consistent with the results of the OSSE, the hybrid forecast improved upon 3DVAR 

forecast in the western part of the verification region more than the eastern part. Vertical 

profiles of the rms 12-hour forecast fit to observations plotted for the western and eastern 

domains separately showed the same results (not shown).  As discussed in Part I, one 

reason may be the hybrid improved the analysis more upstream over the data-sparse 

eastern Pacific.  In section 3c, we consider a period of January 2003 when the hybrid had 

a dramatically smaller forecast error than the 3DVAR, which will demonstrate how the 

hybrid can correctly extrapolate the land-based observations into the data-sparse ocean 

region and thus improve the forecast downstream. 

 

3) HYBRID SENSITIVITY TO LBC ENSEMBLE PERTURBATION 

CHARACTERISTICS 

 As stated in section 2a, the LBC ensemble perturbations for all previous 

experiments were generated by drawing random perturbations from the default 3DVAR 

static covariance.  We performed extra experiments to see if the 12-hour forecast error 

from the hybrid would vary significantly if the magnitude and the length scale of the 

perturbations were changed.  In one experiment, we multiplied the perturbations 

generated by the default 3DVAR by 1.5.  In the other experiment, we multiplied the 
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length scale of the perturbation by 8/3 (to the same value used in the LBC ensembles for 

the real-time WRF EnKF system at the University of Washington; Ryan Torn 2007, 

personal communication).  For both experiments, we used 1 !
1
= 0.5  and S

e
= 2828 km .   

Table 4 shows the rms 12-hour forecast fit to the observations over the 

verification domain for the two new experiments along with the hybrid whose LBC 

ensemble perturbations were generated by the default 3DVAR covariance.   The 

performance of the hybrid was not sensitive to the chosen magnitude and length scale of 

the perturbations.  This could be because, as suggested by the OSSE experiment by Torn 

et al. (2006), the verification region was in the inner quarter of the domain, which was 

less affected by the LBCs than the outer region.  This also could be because all three 

choices of the LBC perturbations were crude ways to model the LBC uncertainty. 

 

b. Verification of the ensemble spread 

 In this section, we measure the relationship of the ETKF 12-hour ensemble spread 

to the 12-hour background forecast error to evaluate how well the spread estimated the 

background forecast error.  

 As mentioned in section 2c and section 2b of Part I, there are two tunable 

coefficients in the ETKF, the inflation factor (! ) and the factor (! ) that estimate the 

fraction of the background error variance projected onto the ensemble subspace.  In the 

real-data experiment, these factors were intended to ameliorate the systematic 

underestimate on the error variance by the ETKF not only due to the limited ensemble 

size but also due to other mis-represented error sources such as the model error.  Both 

factors were determined adaptively in the ETKF.  Figure 3 shows the factors !  and !  
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during the 4-week data assimilation period.  The factors started to converge to constant 

values after 5 days (10 cycles).  The average values after day 5 for !  and !  were 8.6 

and 11% respectively.  As expected, the inflation factor !  was larger and the factor !  

was smaller than those in Part I’s OSSE, due to other sources of system errors such as the 

model error in the real-data experiments.   

 Next we define the metric to verify the ETKF ensemble spread.  If the ensemble 

performs optimally, the innovation covariance should satisfy  

                                  y
o
!Hx

b( ) yo !Hxb( )
T

!R =HPeHT ,                                    (1) 

(e.g., Gelb 1974, eq. 9.1-15; Houtekamer et al. 2005).  In eq. (1), Pe  is the background-

error covariance estimated from the ensemble, H  is the observation operator, R  is the 

observation error covariance matrix, yo  is a vector of observations, and xb  is the 

ensemble-mean forecast.  The symbol !  represents expectation.  Therefore, examining 

the diagonal elements of the matrices on the left and right hand sides of (1) provides a 

measure on the skill of the ensemble spread. If the magnitude of the diagonal elements on 

the right and left sides of eq. (1) are similar, then ensemble spread is said to be consistent 

with the background error at the observation locations. In the following calculation, the 

expectation was estimated by an average over many observation times and locations. 

Figure 4 shows the vertical profile of the 12-hour ensemble spread (square root of 

the diagonal elements of the right side of eq. (1) averaged for each level) versus the 

square root of the 12-hour innovation variance minus the observation error variance 

(square root of the diagonal elements of the left side of eq. (1) averaged for each level) 

for the wind and temperature. The hybrid shown in Fig. 4 corresponded to the weighting 
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factor 1 !
1
= 0.5 and the localization scale S

e
= 2828 km .  The value at each pressure 

level was calculated by averaging the data collected within a layer that was 50 hPa above 

and below that level.  As stated above, the statistics were collected over all observation 

sites within the verification domain over the verification period.  Measured under the 

norm that defined the inflation factor (Wang and Bishop 2003; eq. (6) in Part I), the 

overall spread matched the overall first-guess error by construction.  Checking wind and 

temperature individually in Fig. 4, the overall spread of the wind was over-dispersive and 

the temperature spread was under-dispersive. Further examining individual levels, we 

found that, for both the wind and the temperature, the ensemble spread was under-

dispersive in the lower and upper levels and over-dispersive in between.  

Compared to the OSSE results of Part I, the ensemble spread in the real-

observation experiment was less representative of the background forecast error.  For 

example, as shown on Fig. 4, the ensemble spread of the temperature near the surface was 

much smaller than the background forecast error.  This was consistent with the systematic 

model bias presumably due to the deficiency in parameterizing the boundary layer, 

surface layer and the land surface processes. Since all 50-member ensembles were run 

with the same set of physics schemes, such error was not properly represented in the 

ensemble.  In addition, the initial state uncertainty for the land surface was not perturbed, 

which could also lead to spread deficiency at low levels (Sutton et al. 2006).  The lack of 

ensemble spread due to mis-representation of these additional error sources can be 

spatially inhomogeneous, an effect that was not captured by an inflation that was 

calculated based on innovation variances summed over all variables and the entire 

domain.  
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It is possible that the spread-skill consistency may be improved if we explore 

other methods to account for these error sources.   An inflation factor that is not only 

adaptive in time but also adaptive in space (Anderson 2007) can be used to account for 

the inhomogeneity of the spread deficiency.  Alternatively, one can employ different 

physical parameterizations for different members (e.g., Fujita et al. 2007, Houtekamer et 

al. 1996) or using additive noise method (e.g., Whitaker et al. 2007; Hamill 2006; 

Houtekamer et al. 2005; Mitchell et al. 2002). To perturb the land surface state, one can 

use land surface state analyses from different sources or include the land surface state in 

the ensemble update. 

  

c. Case study 

 Previous studies have shown that flow-dependent estimates of background-error 

covariances are particularly helpful in the data-sparse regions and in the analysis of 

unobserved variables (Hamill and Snyder 2000; Snyder and Zhang 2003; Whitaker et al. 

2007; Part I).  Part I concluded that ensemble-based estimate of background errors 

provided varying, flow-dependent adjustments to the observations. Sometimes the 

ensemble covariance produced large increments in data void regions because of the 

diagnosed strong correlation of the background errors in these regions with those in the 

data-dense region.  In comparison, the 3DVAR used a fixed, isotropic background error 

covariance model and the update for the data-void region was constrained by the fixed 

length scale in the static covariance.  The improved analysis from the ensemble-based 

methods in data sparse regions subsequently improved the forecast downstream.  
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Another potential benefit of the ensemble-based covariance estimates is a more 

explicit coupling of the moisture to other state variables. In the WRF 3DVAR system, the 

humidity is weakly coupled with temperature field since the static covariance model does 

not explicitly include cross-covariances between humidity and other state variables. In 

contrast, the flow-dependent dynamical relationship between the moisture field and other 

fields is easily represented by the cross-variable covariances of the ensemble. We 

hypothesize that the hybrid system may be able to benefit from all these advantages of 

the ensemble covariance. In this section, we discuss such potential advantages of the 

hybrid over the 3DVAR through a case study. 

 We chose to understand why the hybrid improved the 12-hour forecast valid at 

1200 UTC 09 January 2003 (day 9), a date when the hybrid suddenly began to produce 

forecasts that were dramatically lower in error than the 3DVAR (Fig. 1).  In the following 

diagnostics, we focused on determining the factors that contributed to the improvement 

of the wind forecast by the hybrid.   

We first plot the difference of the 12-hour wind forecasts between the 3DVAR 

and the hybrid valid at 1200 UTC 09 January 2003.  Figure 5 (solid and dotted lines) 

shows the vertical profile of the 12-hour wind forecast fit to observations averaged over 

the verification domain.  The improvement of the hybrid over the 3DVAR peaked at 300 

hPa.   

A spatial map of the difference of the 12-hour wind forecast between the hybrid 

and the 3DVAR at 300 hPa is shown in Fig. 6.  The largest difference was in the eastern 

Pacific and southwest of California.  Relative to the hybrid, the 3DVAR wind forecast 

showed an anti-cyclonic anomaly in the eastern Pacific. (Hereafter, we call the difference 
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of the 3DVAR and hybrid forecasts or analyses, defined as 3DVAR minus hybrid, the 

anomaly).  This wind forecast anomaly penetrated into the verification domain, extending 

from southern California to the northern Mexico.  At the radiosonde sites, 3DVAR 

showed the largest westerly anomaly at Vandenberg and largest northerly anomaly at El 

Paso at 300 hPa.   

We further verified the forecasts over this region by comparing the 12-hour wind 

forecasts at 1200 UTC 9 January 2003 to the soundings at Vandenburg and El Paso.  

Figure 7 shows that while the 3DVAR wind forecast deviated from the sounding by as 

much as 37 ms!1 , the hybrid fit the sounding closely.  Thus, the 3DVAR anti-cyclonic 

anomaly shown in Fig. 6 was largely associated with errors in the forecast from the 

3DVAR analysis.  

 To understand these dramatic differences, we looked back a few data assimilation 

and forecast cycles prior to find the original source of the 3DVAR anomaly in the 300 

hPa wind.  Figure 8 shows the evolution of the 3DVAR anomaly in 300 hPa height over 

the 24-hour period between 1200 UTC 08 and 1200 UTC 09 January.  Note that the 

positive 300-hPa geopotential anomaly in Fig. 8e corresponds to the anti-cyclonic wind 

anomaly in Fig. 6.  Collectively, Fig. 8 indicates that the ridge anomaly in 3DVAR 

started to appear at the analysis time at 1200 UTC 08 January 2003, when it was centered 

at about 127 W, 22N (Fig. 8b).  This anomaly grew during the subsequent 12-hour 

forecast (Fig. 8c).  It became stronger after the analysis at 0000 UTC 9 January 2003 

(Fig. 8d), and was further intensified during the next 12-hour forecast, leading to the 

ridge anomaly (Fig. 8e), and the wind forecast anomaly (Fig. 6) in 3DVAR at 1200 UTC 

09 January 2003. 
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 To understand the original difference in the 300 hPa height analyses shown in Fig. 

8b, we examined the 300 hPa height increments at 1200 UTC 08 January 2003 for both 

the hybrid and the 3DVAR.  It was found that the hybrid, through utilizing ensemble-

based covariances, updated the geopotential height over the eastern Pacific more 

extensively than the 3DVAR (not shown).  

Next we conducted a series of diagnostics to understand the growth of the 

geopotential anomaly (Fig. 8c) and its impact on the 12-hour forecast valid at 1200 UTC 

9 January 2003.  Examination of the forecast from 1200 UTC 8 January 2003 every 3 

hours until 0000 UTC 9 January 2003 confirmed that the region of the geopotential 

anomaly at about 127W, 22N in Fig. 8b grew quickly and formed the ridge anomaly in 

Fig. 8c.  A further examination of the accumulated precipitation during the 12-hour 

forecast period ending at 0000 UTC 9 January 2003, showed that the 3DVAR was 

raining heavily during this period in this region (Fig. 9a) while the hybrid was not (Fig. 

9b).   

The additional precipitation and diabatic heating in the forecast from the 3DVAR 

analysis might be expected to produce ridging, consistent with the positive 3DVAR 

geopotential anomaly.  To confirm this hypothesis, we removed the rain in the 3DVAR 

by replacing the water vapor mixing ratio in the 3DVAR analysis at 1200 UTC 8 January 

2003 with that from the hybrid analysis.  A revised 3DVAR 12-hour forecast was then 

generated.  The resulting accumulated precipitation ending at 0000 UTC 9 January 2003 

is shown in Fig. 10a and the corresponding 12-hour 300 hPa height anomaly forecast 

valid at 0000 UTC 9 January 2003 is shown in Fig. 10b.  The precipitation in the revised 
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forecast, especially in the region where the ridge anomaly grew rapidly, was significantly 

reduced, as was the corresponding geopotential anomaly.   

To see if these apparent improvements in the moisture analysis would also benefit 

subsequent 3DVAR analyses and forecasts, we then continued the 3DVAR data 

assimilation cycle through 1200 UTC 9 January 2003.  Fig. 5 (dash-dotted line) shows 

the fit of the corresponding wind forecast to the observations in the verification domain.  

The advantage of the hybrid over 3DVAR at 300 hPa was reduced by 73%, through the 

improvements in the earlier moisture analysis in 3DVAR.    

The above diagnostics suggest that the difference in the water-vapor mixing ratio 

analyses at 1200 UTC 8 January 2003 over the eastern Pacific was a main factor that led 

to the ridge anomaly in the 3DVAR forecast on 1200 UTC 9 January 2003.  To 

understand how the hybrid adjusted the moisture field over the data-void eastern Pacific 

using the observations over the west coast, Fig. 11a shows the 700 hPa water vapor 

mixing ratio increment by the hybrid after assimilating all observations at 1200 UTC 8 

January 2003.  In the background forecast, the moisture gradient extending from the 

center of the domain to the southwest of the domain was associated with a warm front. A 

positive increment was associated with the moist air penetrating from the southeast 

corner, while negative increments appeared along the warm front and in the warm moist 

air mass. In other words, the hybrid extrapolated information from the wind and 

temperature observations over land in order to dry the troposphere along the warm front. 

The drying along the warm front reached the data-void eastern Pacific where the 3DVAR 

forecast produced spurious rain.  Further diagnostics (not shown) also revealed that the 
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hybrid dried all of the lowest 12 model levels in the same region, with increments up to 1 

g/kg.  

As an additional demonstration of the flow-dependent update by the hybrid, Fig. 

11b shows the low-level moisture increment for another case at 1200 UTC 6 January 

2003. The increment of the mixing ratio again aligns with the moisture gradient. In this 

case, there was negative increment at the moisture bulge at the southwest corner and 

positive increment downstream.  Similar plots for both cases (not shown) for the 3DVAR 

analysis showed negligible moisture increment and increments for the wind and 

temperature were also localized as was defined by the static correlation length scale.  

   

4. Conclusions and Discussions 

 As a follow-up to the OSSEs of Part I, this paper has presented further tests of the 

hybrid ETKF-3DVAR data assimilation system developed for WRF by assimilating real 

observations. The experiments were conducted in a region surrounding North America. 

Radiosonde wind and temperature observations for a 4-week period starting 1200 UTC 1 

January 2003 were assimilated.  

Our results showed that the hybrid analyses produced more accurate 12-hour 

forecasts than the 3DVAR.  The improvements from the hybrid were larger over western 

North America than eastern North America.  Vertical profiles of the 12-hour forecast 

error showed that, for the wind, the hybrid produced the largest improvement by 

9%~11% relative to the 3DVAR at 200-300 hPa.  For the temperature, the hybrid 

improved upon the 3DVAR by 3% on average at all layers except in the lower 

troposphere, where both the hybrid and the 3DVAR showed large systematic errors.  The 
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performance of the hybrid was generally not sensitive to the magnitude and the scale of 

LBC ensemble perturbations generated by the static covariance, perhaps because of the 

large domain used.   

Using the inflation and subspace projection factors of Wang et al. (2007), the 

overall ensemble spread was tuned to agree in magnitude with the overall 12-hour 

forecast error.  For individual variables and layers, the consistency between spread and 

error was less than that in the OSSE.  As discussed in section 3b, this suggested more 

sophisticated methods other than a global inflation are needed to account for the system 

errors.  

A case study was performed to understand a particular situation when the hybrid 

system outperformed the 3DVAR.  The hybrid was able to make significant adjustments 

to the background over the data-void eastern Pacific using the observations over land 

according to the background flow.   Although only wind and temperature observations 

were assimilated, the hybrid successfully updated the moisture field flow-dependently 

through cross-variable covariances defined by the ensemble.  The changes in the moisture 

analysis improved the subsequent wind and temperature analyses and forecasts 

downstream in the verification region.  

In this pilot study, we employed coarse resolution model and relatively sparse 

observation network. Future work needs to explore the impact of the hybrid with a 

higher-resolution model and dense observations that are close to real-world 

implementation.  In general, the positive impact of the hybrid may diminish when model 

error is large and when the observation network becomes more uniform and denser (e.g., 

Hamill and Snyder 2000; Whitaker et al. 2004, 2007).  As discussed in Part I, our choice 
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of a coarse resolution in this study emphasized the synoptic scales.   As the model 

resolution increases and mesoscale features are resolved, it is likely that the mesoscale 

features, which are more sensitive to the details of imperfect model parameterizations, 

may not be handled as well as the synoptic scales.  On the other hand, it is commonly 

assumed that increasing resolution will decrease model error at the energetically 

dominant synoptic scales.  Also note that meso-scales are more poorly observed than 

larger scales, and do not exhibit as strongly the balances assumed by the 3DVAR 

covariance model, in which case the hybrid with ensemble covariance may demonstrate 

its advantage. 

Note also that results of Buehner (2005) for a similar hybrid assimilation system 

applied to global analyses were less encouraging in terms of the relative performance of 

3DVAR and hybrid.  Since there were many differences between those experiments and 

ours in terms of numerical models, ensemble generation methods, ensemble size, 

observation networks and verification regions, it is unclear which of these explain the 

relative performance difference.  

Further development and tests of the hybrid system are warranted given the 

encouraging results in this study and its appealing characteristics, such as its 

straightforward implementation within existing variational schemes and the efficient 

update of the ensemble perturbations by the ETKF.  Besides, with further development of 

the ensemble, the benefit of the hybrid may also improve.  For example, using multiple 

physics or stochastic physics to account for model errors may provide flow-dependent 

representation of the model error, which may improve the skill of the ensemble to 

estimate the background forecast error.  The performance of the ensemble may also 
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improve if we use short-range ensemble forecasts from a global ensemble data 

assimilation system to generate the LBC ensembles, instead of using the random 

perturbations drawn from a static covariance. 
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Table Caption: 
 
 

TABLE 1. Root-mean-square (rms) fit of the 12-hour wind and temperature forecasts to 

the radiosonde observations for the 3DVAR experiments with default and the tuned static 

background error covariances. 

 

TABLE 2. Root-mean-square (rms) fit of the 12-hour wind and temperature forecasts to 

the radiosonde observations for the hybrid with various combinations of the weighing 

coefficients 1 !
1

 and the covariance localization scales S
e
. Please see text for the 

definition of 1 !
1

 and S
e
.  Numbers in the parentheses indicate the percentage 

improvement relative to the 3DVAR with tuned static covariance.  The smallest rms fits 

are highlighted.  For 1 !
1
=1.0 , experiments do not depend on S

e
. 

 

TABLE 3. Rms fit of the 12-hour forecasts to the radiosonde observations for the 

3DVAR and the hybrid (1 !
1
= 0.5 , S

e
= 2828 km ) over the western and eastern 

verification regions.  The 3rd column is the absolute and percentage (in parentheses) 

improvement of the hybrid relative to the 3DVAR. 

 

TABLE 4. Sensitivity of the rms 12-hour hybrid forecast fit to observations to the 

magnitude and the scale of the LBC ensemble perturbations generated by the static 

covariance.  The hybrid corresponds to 1 !
1
= 0.5  and S

e
= 2828 km . (1) First row shows 

the rms forecast fit to observations for the LBC ensemble perturbations generated by the 

default 3DVAR.  (2) Second row is for increasing the magnitude of the perturbations 
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generated in (1) by a factor of 1.5. (3) Third row is for increasing the length scale of the 

perturbation by a factor of 8/3.  
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Figure Captions: 
 
 

Fig. 1. Time series of the rms fit of the 12-hour forecasts to the radiosonde observations 

over the verification domain for 3DVAR (dotted) and the hybrid with 1 / !
1
= 0.5  and 

S
e

= 2828 km  (solid).  (a) wind. (b) temperature. 

 

Fig. 2. Vertical profiles of the rms fit of the 12-hour forecasts to the radiosonde 

observations (thin lines) and bias (thick lines) for 3DVAR (dotted) and hybrid with 

1 / !
1
= 0.5  and S

e
= 2828km  (solid). (a) wind. (b) temperature. 

 

Fig. 3. The inflation factor (! ) and the factor (! ) of percentage projection of the first 

guess error variance onto the ensemble subspace for the ETKF in the hybrid experiment 

with 1 !
1
= 0.5  and S

e
= 2828 km . 

 

Fig. 4 Vertical profiles of the ETKF ensemble spread (dotted) versus the square root of 

the innovation variance minus the observation error variance (solid) for (a) wind and (b) 

temperature.  

 

Fig. 5 Vertical profiles of the rms fit of the 12-hour wind forecast valid at 1200 UTC 9 

January 2003 to the radionsonde observations over the verification domain for hybrid 

with 1 / !
1
= 0.5  and S

e
= 2828km  (solid), 3DVAR (dotted) and 3DVAR whose water 

vapor mixing ratio analysis was replaced by that of the hybrid at 1200 UTC 8 January 

2003 (dash-dotted). 
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Fig. 6 The difference of the 12-hour wind forecast between the 3DVAR and the hybrid 

with 1 / !
1
= 0.5  and S

e
= 2828km  valid at 1200 UTC 9 January 2003. Solid lines are the 

12-hour 300 hPa height forecast of the hybrid (m). Vectors are the wind forecast 

difference (3DVAR minus hybrid). The shades are the magnitude of the wind forecast 

difference.  

 

Fig. 7 Fit of the 12-hour wind forecast to the soundings valid at 1200 UTC 9 January 

2003 for the 3DVAR (dotted) and hybrid with 1 / !
1
= 0.5  and S

e
= 2828 km  (solid). (a) 

zonal wind fit to the sounding at Vandenburg, CA. (b) meridional wind fit to the 

sounding at El Paso, NM. 

 

Fig. 8 The difference of the analysis and the first guess for the 300 hPa geopotential 

height between the 3DVAR and the hybrid from 1200 UTC 8 January 2003 to 1200 UTC 

9 January 2003 every 12 hours. (a) difference of the background at 1200 UTC 8 January 

2003. (b) difference of the analysis at 1200 UTC 8 January 2003. (c) difference of the 

background at 0000 UTC 9 January 2003. (d) difference of the analysis at 0000 UTC 9 

January 2003. (e) difference of the 12-hour forecast at 1200 UTC 9 January 2003. Black 

contours are the 300 hPa geopotential height (m) for the hybrid. Color shades are the 

difference (3DVAR minus hybrid) of the 300 hPa geopotential height (m).  

 

Fig. 9 12-hour forecasts of the accumulated precipitation valid at 0000 UTC 9 January 

2003 for (a) 3DVAR and (b) hybrid. 
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Fig. 10 (a) same as Fig. 9a, and (b) same as Fig. 8c, except that plots represent the 

forecast simulations where the 3DVAR water vapor mixing ratio analysis at 0000 UTC 9 

January 2003 was replaced with that of the hybrid.  

 

Fig. 11 700 hPa water vapor mixing ratio increment by the hybrid at (a) 1200 UTC 8 

January 2003 and (b) 1200 UTC 6 January 2003. Black lines are the first guess of 700 

hPa water vapor mixing ratio. Color shades are the increment of the mixing ratio by 

assimilating radiosonde wind and temperature observations. 
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TABLE 1. Root-mean-square (rms) fit of the 12-hour wind and temperature forecasts to 
the radiosonde observations for the 3DVAR experiments with default and the tuned static 
background error covariances. 
 
 Wind ( U

2
+V

2 ,ms!1 ) T ( k ) 
Default 3DVAR 6.40 1.89 
Tuned   3DVAR 6.39 1.87 
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TABLE 2. Root-mean-square (rms) fit of the 12-hour wind and temperature forecasts to 
the radiosonde observations for the hybrid with various combinations of the weighing 
coefficients 1 !

1
 and the covariance localization scales S

e
. Please see text for the 

definition of 1 !
1

 and S
e
.  Numbers in the parentheses indicate the percentage 

improvement relative to the 3DVAR with tuned static covariance.  The smallest rms fits 
are highlighted.  For 1 !

1
=1.0 , experiments do not depend on S

e
. 

 
 
 
 
Wind (ms!1 ) S

e
= 4242 km  2828 km  1414 km  707 km  

1 !
1
=1.0  6.255 (2.2)    

          0.8  5.991 (6.3) 6.001 (6.1) 6.046 (5.4) 6.186 (3.2) 
          0.5  5.997 (6.2) 5.960 (6.8) 5.998 (6.2) 6.146 (3.9) 
          0.2  5.964 (6.7) 6.010 (6.0) 6.045 (5.4) 6.160 (3.6) 
          0.0  6.457 (-1.0) 6.327 (1.0) 6.241 (2.4) 6.201 (3.0) 
 
 
 
T  (K ) S

e
= 4242 km  2828 km  1414 km  707 km  

1 !
1
=1.0  1.858 (0.6)    

          0.8  1.818 (2.7) 1.813 (3.0) 1.813 (3.0) 1.827 (2.2) 
          0.5  1.821 (2.6) 1.818 (2.7) 1.816 (2.8) 1.823 (2.5) 
          0.2  1.851 (1.0) 1.845 (1.3) 1.829 (2.1) 1.841 (1.5) 
          0.0  2.034 (-8.8) 1.979 (-5.9) 1.921 (-2.8) 1.886 (-0.9) 
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TABLE 3. Rms fit of the 12-hour forecasts to the radiosonde observations for the 
3DVAR and the hybrid (1 !

1
= 0.5 , S

e
= 2828 km ) over the western and eastern 

verification regions.  The 3rd column is the absolute and percentage (in parentheses) 
improvement of the hybrid relative to the 3DVAR. 
 
Wind (ms!1 ) 3DVAR HYBRID IMPROVEMENT 
WEST 7.143 6.567 0.576 (8.1) 
EAST 5.713 5.423 0.290 (5.1) 
 
 
T ( k ) 3DVAR HYBRID IMPROVEMENT 
WEST 2.008 1.929 0.079 (3.9) 
EAST 1.763 1.735 0.028 (1.6) 
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TABLE 4. Sensitivity of the rms 12-hour hybrid forecast fit to observations to the 
magnitude and the scale of the LBC ensemble perturbations generated by the static 
covariance.  The hybrid corresponds to 1 !

1
= 0.5  and S

e
= 2828 km . (1) First row shows 

the rms forecast fit to observations for the LBC ensemble perturbations generated by the 
default 3DVAR.  (2) Second row is for increasing the magnitude of the perturbations 
generated in (1) by a factor of 1.5. (3) Third row is for increasing the length scale of the 
perturbation by a factor of 8/3.  
 
 Wind (ms!1 ) T (K ) 
Default 3DVAR 5.960 1.818 
Magnitude multiplied by 1.5 6.005 1.819 
Scale multiplied by 8/3 5.956 1.816 
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Fig. 1. Time series of the rms fit of the 12-hour forecasts to the radiosonde observations 
over the verification domain for 3DVAR (dotted) and the hybrid with 1 / !

1
= 0.5  and 

S
e

= 2828 km  (solid).  (a) wind. (b) temperature. 
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Fig. 2. Vertical profiles of the rms fit of the 12-hour forecasts to the radiosonde 
observations (thin lines) and bias (thick lines) for 3DVAR (dotted) and hybrid with 
1 / !

1
= 0.5  and S

e
= 2828km  (solid). (a) wind. (b) temperature. 
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Fig. 3. The inflation factor (! ) and the factor (! ) of percentage projection of the first 
guess error variance onto the ensemble subspace for the ETKF in the hybrid experiment 
with 1 !

1
= 0.5  and S

e
= 2828 km . 

 
 
 
 
 
 
 
 



 43 

 
 

 
Fig. 4. Vertical profiles of the ETKF ensemble spread (dotted) versus the square root of 
the innovation variance minus the observation error variance (solid) for (a) wind and (b) 
temperature.  
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Fig. 5. Vertical profiles of the rms fit of the 12-hour wind forecast valid at 1200 UTC 9 
January 2003 to the radionsonde observations over the verification domain for hybrid 
with 1 / !

1
= 0.5  and S

e
= 2828 km  (solid), 3DVAR (dotted) and 3DVAR whose water 

vapor mixing ratio analysis was replaced by that of the hybrid at 1200 UTC 8 January 
2003 (dash-dotted). 
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Fig. 6. The difference of the 12-hour wind forecast between the 3DVAR and the hybrid 
with 1 / !

1
= 0.5  and S

e
= 2828km  valid at 1200 UTC 9 January 2003. Solid lines are the 

12-hour 300 hPa height forecast of the hybrid (m). Vectors are the wind forecast 
difference (3DVAR minus hybrid). The shades are the magnitude of the wind forecast 
difference.  
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Fig. 7. Fit of the 12-hour wind forecast to the soundings valid at 1200 UTC 9 January 
2003 for the 3DVAR (dotted) and hybrid with 1 / !

1
= 0.5  and S

e
= 2828 km  (solid). (a) 

zonal wind fit to the sounding at Vandenburg, CA. (b) meridional wind fit to the 
sounding at El Paso, NM. 
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Fig. 8. The difference of the analysis and the first guess for the 300 hPa geopotential 
height between the 3DVAR and the hybrid from 1200 UTC 8 January to 1200 UTC 9 
January 2003 every 12 hours. (a) difference of the background at 1200 UTC 8 January 
2003. (b) difference of the analysis at 1200 UTC 8 January 2003. (c) difference of the 
background at 0000 UTC 9 January 2003. (d) difference of the analysis at 0000 UTC 9 
January 2003. (e) difference of the 12-hour forecast at 1200 UTC 9 January 2003. Black 
contours are the 300 hPa geopotential height (m) for the hybrid. Color shades are the 
difference (3DVAR minus hybrid) of the 300 hPa geopotential height (m).  
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Fig. 9 12-hour forecasts of the accumulated precipitation valid at 0000 UTC 9 January 
2003 for (a) 3DVAR and (b) hybrid. 
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Fig. 10.  (a) same as Fig. 9a, and (b) same as Fig. 8c, except that plots represent the 
forecast simulations where the 3DVAR water vapor mixing ratio analysis at 0000 UTC 9 
January 2003 were replaced with that of the hybrid.  
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Fig. 11. 700 hPa water vapor mixing ratio increment by the hybrid at (a) 1200 UTC 8 
January 2003 and (b) 1200 UTC 6 January 2003. Black lines are the first guess of 700 
hPa water vapor mixing ratio. Color shades are the increment of the mixing ratio by 
assimilating radiosonde wind and temperature observations. 

 
 


